Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

Engineering Chemistry

Course			20BS1102 Year				I S		Sem	Semester		I				
Code																
Course]	Basic Science		Brai	Branch		EEE		Cou	rse Type	e	Theory			
Category																
Credits			3			L-T-P		3-0-0		Prerequisites		S	Nil			
Continuous		IS	30			Semester End		70		Total Marks			100			
Internal					Eval	Evaluation										
Evalu	atior	1						<u> </u>								
TT		C 1	1	C	1	41		se Outo								
		successful completion of the course, the student will be able to										1 Ciniahina				
CO1		Understand the basic principles related to renewable energy sources, energy systems, and materials (L2)														
CO2																
CO2		electrodes and cells (L3)														
CO3		Apply suitable methods for metal finishing and advanced techniques for the character.														
203		terials (carous	5 for moun finishing and advanced techniques for the charac								·ucic	.12411	, or mano	
CO4		Analyse the performance of different electrochemical techniques, energy conversion sys														
		l nano n	-							1.555,			5		, r == J === == =	
CO5	_									gies rel	ated to E	Engineeri	ing cl	hemis	try.	
	1										f Progra					
											n, 1:Low					
	PO1	PO2	PO3		PO5		PO7				PO11	PO12	PSC	D1	PSO2	
CO1																
CO2	3						1					1		1		
CO3	3						1					1		1		
CO4	3						1					1		1		
CO5	3						1			2		1		1		
							S	yllabu	IS							
Unit 1	No.							abus						Maj	pped CO's	
1		ELECTROCHEMICAL ENERGY SYSTEMS														
		Introduction-Origin of electrode potential, Electrode Potentials, Measurement of														
		Electrode Potentials, Nernst Equation for a single electrode, EMF of a cell,														
		Types of Electrodes or Half Cells-Hydrogen and Calomel electrode,													CO1,CO2, CO4,CO5	
		Electrochemical Cell, Galvanic Cell vs Electrolytic Cell, Electrochemical													14,CO5	
		conventions, Types of Ion Selective Electrodes- glass membrane electrode, polymer membrane electrodes, solid state electrodes,														
		gas sensing electrodes (classification only), Concentration Cells.														
2	+		ERY T				1011 UII.	1 <i>y)</i> , CO	iicciiii (ition CC	110.					
4							eristics	s. class	sificati	on of 1	oatteries,	Import	ant			
					•						che cel	-		CO1,CO2,		
									•		battery			CO4,CO5		
										_	gen and				.,	
											, 	782				
3	cell, propane and oxygen fuel cell- Merits of fuel cell. RENEWABLE SOURCES OF ENERGY															
3		Introduction- sources of renewable energy														
3		Introdu	uction-	source	es of re	newabl	le energ	gy								

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada

PVP20

Department of Freshman Engineering

	Production of Solar Grade Silicon from Quartz - Doping of Silicon- p and n	CO4,CO5
	type semi conductors- PV cell / solar cell- Manufacturing of Photovoltaic	
	Cells using Chemical Vapor Deposition Technique-applications of solar energy	
4	METAL FINISHING	
	Technological importance of metal finishing, methods of metal finishing,	
	manufacturing of electronic components, electrochemical techniques of forming,	CO1,CO3,
	machining and etching, electrolytic cell, principle of electroplating, nature of	CO4,CO5
	electrodeposits, electroplating process, Electroplating of chromium, gold etc.	
	Electroless plating of copper, nickel	
5	POLYMERS & NANOMATERIALS	
	Polymers: Introduction thermoplastic and thermo setting resins, Preparation,	
	properties and uses of polystyrene and Polyphosphazines., differences between	
	Nanomaterials: Introduction to nanomaterial: nanoparticles, nanocluster, carbon	
	nanotube (CNT) and nanowires. Chemical synthesis of nanomaterials: sol-gel	
	method. Characterization: Principle and applications of scanning electron	CO1,CO3,
	microscope (SEM) and transmission electron microscope (TEM).	CO4,CO5
		23.,300

Learning Resources

Text Books

- 1. P.C. Jain and M. Jain, Engineering Chemistry, 15/e, DhanapatRai& Sons, Delhi (2014).
- 2. B.K. Sharma, Engineering Chemistry, Krishna Prakashan, Meerut.
- 3. O G Palanna, Engineering Chemistry, Tata McGraw Hill (2009).

Reference Books

- 1. Sashichawla, A Textbook of Engineering Chemistry, DhanapathRai and sons, (2003)
- 2. B.S Murthy and P. Shankar, A Text Book of NanoScience and NanoTechnology, University Press (2013).
- 3. S.S. Dara, A Textbook of Engineering Chemistry, S.Chand& Co, (2010)
- 4. N.Krishna Murthy and Anuradha, A text book of Engineering Chemistry, M murthyPublications (2014).
- 5. K. SeshaMaheshwaramma and Mridula Chugh, Engineering Chemistry, Pearson India Edn services, (2016).

e- Resources & other digital material

- 1. https://nptel.ac.in/courses/105105178/
- 2. http://202.53.81.118/course/view.php?id=82